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Abstract 

In traditional harvesting model, a fishing effort, E, is defined by the fishing intensity and does not 

address the inverse effect of fish abundance on the fishing effort. In this paper, based on a 

canonical differential equation model, we developed a new fishing effort model which relies on 

the density effect of fish population. We obtained new differential equations to describe certain 

standard Fisheries management strategies. This study concludes that a control parameter β( the 

magnitude of the effect of the fish population size on the fishing effort function E), changes not 

only the rate at which the population goes to equilibrium, but also the equilibrium values. 

To examine systematically the consequences of different harvesting strategies, we used numerical 

simulations and qualitative analysis of six fishery strategies, e.g., proportional harvesting, 

threshold harvesting, proportional threshold harvesting, and seasonal and rotational harvestinng.  

 

Keywords: Population models, Harvesting management strategies, Fisheries, Fishing 

effort, Ordinary differential equations. 

 

 

1. Introduction 

A major current focus in fishery management is how best to ensure harvesting sustainability [1-

3,5,7,13]. Clearly the object of the management is to devise harvesting strategies that will not 

drive species to extinction. Therefore, the notion of persistence and extinction times of the 

populations, as well as a precautionary harvesting policy, is always critical. A control variable of 

every fishery management is the fishing effort [2,8], which is defined as a measure of the intensity 

of fishing operations. 

The Schaefer fishing model [4,5,7,14] takes the form:  

 

 
( )

( ) 1 ( )
dN N t

rN t Y t
dt K

⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (1) 

where N is the population biomass of fish at time t, r is the intrinsic rate of growth of the 

population, K is the carrying capacity, and we assume that r≥0 and K>0 are constants. The harvest 

function is defined as 

 

 ( ) ( )Y t qN t E=  (2) 

Here q≥0 is the catchability coefficient, defined as the fraction of the population fished by a unit 

of effort. E≥0 is the fishing effort, the intensity of the human activities to extract the fish. In 

general, fishing effort is regulated by quotas, trip limits and gear restrictions.   

Equation (2) implies that harvest per unit effort is a function of the size of the population. 

 
( )

( )
Y t

qN t
E

=  (3) 

 

If the price of fish responds to the quantity of the harvest, a greater harvest would induce a lower 

price of harvest, and vice versa. If we assume that the market price of the harvest motivates 



changes in fishing effort, a lower price (or a larger population) induces less fishing effort, and 

vice versa. In traditional fishery models [2,5,8,9], fishing effort E is simply expressed as a 

function of time E=E(t), which does not address the inverse effect of fish abundance on the 

fishing effort [11] (higher density of fish, less effort to catch unit harvest). Under the above 

assumptions, it is more appropriate to express E as a function of population dynamics. For 

example,  
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( , ) ( ) ( )
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E t N t t
N dt

α β= −  (4) 

 

where α≥0 and β≥0 are continuous functions of t. If we substitute (4) back into Eq. (2) we have  
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Y t qN t t
N dt

α β= −  (5) 

We substitute (5) into Eq. (1): 

 

 
1

[1 / ] ( ( ) ( ) ).
dN dN

rN N K qN t t
dt N dt

α β= − − −  (6) 

   

An often debated question [3, 4,11] is whether and when seasonal harvesting strategies are 

effective in fishery management. Traditional management strategies for continuous harvest may 

lead to serious mismanagement (e.g., extinction of fish population). There has been growing 

interest in rotational use of fishing grounds [9,10,13].  There is some evidence that rotational use 

of fishing grounds slightly increases both yield- and biomass-per-recruit [13].  

For our numerical simulations three practical data sets were chosen from [6,11]:  

data1  r=0.3;αq=0.24/0.36/0.42/1.00 and E=1.15 for the max sustainable yield;  

data2  r=0.3;αq=0.57/1.58/1.70/1.81 and E=0.8 for the max sustainable yield;  

data3  r=0.3; αq=0.04/0.18/0.49/0.61/0.72/1.0 and E=0.25 for the max sustainable yield  

2.  Standard fishery strategies models, qualitative analysis and  

numerical solutions 

2.1  Constant harvesting 

Constant harvesting removes a fixed number of fish each year. Furthermore we assume fishermen 

have perfect information of where the fish are 

 

 [1 / ]
dN

rN N K qE
dt

= − −  (7) 

2.2  Proportional harvesting 
A constant fraction of fish is removed each year:   

 

 
1

[1 / ] ( ( ) ( ) )
dN dN

rN N K qN t t
dt N dt

λ α β= − − −  (8) 

  
Where λ is the proportional rate and 0≤λ≤1 is a constant. This equation can be simplified to:  



 [1 / ]
1 1

dN r q
N N K N

dt q q

λ α
λ β λ

= − −
− − β

 (9) 

 

where λqβ≠1 .  

� Qualitative analysis 

Equation (9) has an explicit solution 

(1 )
( )

(1 )
1 exp

1

q K
N t

r q
C t

q

λ α
λ α

λ β

−
=
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The two equilibrium point for this system is N
*

u=0 and N
*

s  = K
r

q
)1(

αλ
− , where N

*

u and N
*

s  

represent the unstable and stable equilibrium point separately. In order to have a stable point 

with positive fish population N
*

s>0 or  

 

 q  <rλ α  (10) 

Example: Let r=0.5, λ=0.5, q=0.8, β=1.0, α=1.0, K=1, and λqα=0.4<0.5.  Figure 1 is the phase 

portrait of this system. The equilibrium point is the intersection of (1 / )
1

N N K
qλ β

−
−

r
 and 

λqα
1-λqβN which is N

*

s=0.2 in this case. As the slope of 
λqα

1-λqβN grows, the value of positive N
*

s  is 

decreased and the fish population becomes extinct. The system undergoes a transcritical 

bifurcation as λqα increases.  

 

 

Figure 1:  Phase portrait of proportional harvesting. =0.5, r λ =0.5, q α =0.8, β =1.0 and K =1. 

If λ=0.5, that satisfies the condition of Eq.(10), all solutions with different initial conditions will 

approach N
*

s=0.2. As λ increases (or an increase in αq), the population is overfished and goes to 

extinction eventually.  



  

Figure 1: Population biomass dynamics with proportional harvesting. r=0.5, α q=0.8, β=1, K=1 

 

� Sustainable yield and dynamics of β  

The sustainable yield at equilibrium is:  
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Y qN q K

r
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Let 0
)(

=
αλqd

dY
, then 

2

r
q =αλ  And  

 
4

max

rK
Y =  (12) 

In Figure 3, as the proportion rate increase, the value of Y will increase but after a certain limit, 

the fish population will become extinct.  

 

Figure 3: Sustainable yield of proportional harvesting. r=0.5. 



 

Figure 4: Dynamics of β, r=0.5, β=0.5, q=0.8. 

Figure 4 shows a time series of N(t) with three β  values which range from above or below α . 

As β  increases, N(t) converges to the equilibrium solution faster for any value of N(0). That is, as 

the value of β increases, E will be affected more by the change of fish population, thus it will 

cause the N(t) to change and converge faster.  

2.3  Restricted proportional harvesting 

An upper limit of harvest is introduced on proportional harvesting:  

 

 

limit

1
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if  ( )
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Y t Y

Y t Y

≤

>
 (13) 

 

where .  As long aslimit 0Y ≥
limit0

4

rK
Y≤ ≤ , when limit( )Y t Y≤ , the population will behave the 

same as strategy 2. As  >  we will have two positive equilibrium points shown in ( )Y t limitY Figure 

5. One thing to notice is that if the initial value  then the fish population will become 

extinct. Therefore, Y

*(0) uN < N

limit  should be constrained by N(0), i.e., 
limit

(0)
(0)(1 )

N
Y rN

K
< − . 



 

Figure 5: Phase portrait of restricted proportional harvesting. 

2.4  Proportional threshold harvesting 

In proportional threshold harvesting, only a fixed proportion of the fish above the threshold is 

harvested.  
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≤
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where . In this case the excess stock is harvested. This policy provides the stock with a 

measure of protection from overexploitation. Eq. (14) can be simplified as:  

0
thre

N ≥

 
(1 / ) ( )

1 (1 )

thre

thre

rN N K q N NdN

Ndt
q

N

λ α

λ β

− − −
=

− −
 (15) 

where 
1

(1 )threN N
qλβ

≠ −  

� Qualitative analysis 

From the analytical solution of this equation for N
thre

>0  we have N
*

u≤0 and . As the slope 

of the straight line or N
thre

 decreases, 

* 0sN ≥

N
*

s  increases and had been always less than K.  Because 

N(0)≥0, all the solutions will converge to . Comparing with strategy 2 with the same set 

of parameters, 

* 0sN ≥

N
*

s  increases but Y decreases in this strategy.  



 

Figure 6: Phase portrait of proportional threshold harvesting. r=0.5,  λ=0.5, α q=0.8, β=1.0, 

K=1, Nthre=0.2 

 

� Sustainable yield and effects of β 

The sustainable yield at equilibrium is:  

 
* *( )s s threY qN N Nλ α= −   

and the total yield will increase proportionally to λqα.  

Figure 7 shows the change of N(t) for different values of β which vary from above or below α. 

It is interesting to note that as β increases, N(t) will converge to the N
*

s  faster if N(0) is above 

the equilibrium solution. However, if N(0) is below N
*

s , an increase in β will cause N(t) to 

converge slightly slower.   

 

Figure 7. Effects of β in proportional threshold harvesting  = 0.1; λ = 0.5; q=0.4; K = 

0.5; N

r

thre = 0.3. 



2.5  Seasonal (periodic) harvesting 

 
1

[1 / ] ( ) ( ( ) ( ) )
dN dN

rN N K t qN t t
dt N dt

λ α β= − − −  (17) 

 

where λ(t) is a periodic function of time with the period of 1 year. This system has the same 

format as case 2, thus the limitation is λqα<r. However, because λ is a periodic function and 

varies from season to season, the fish won’t become extinct during fishing time and, if in some 

season we stop fishing, the amount of fish might be able to increase again.  

 

1. First example:  

 

( )
0.5sin( )

( )

0

startt n t

t H
π

λ
− −⎧

⎪= ⎨
⎪⎩

  
startn+t ,  n=0,1,2...startf t n t H

other

< < + +
  

where  t
start

 is the harvest starting time within one year. The first test is based on t
start

=0.25 and 

H=0.25 which means harvest in summer season only.  

In a long run, the population is shown in Figure 8:  

 

 

Figure 8: Long-time behavior of population in seasonal harvesting  r=1,λ=0.5,q α =0.4.  

A solution of this system depends on the magnitude of λ and how it varies during different 

seasons. 



 

Figure 9: Seasonal harvesting one year solution with data1   

 

 

Figure 10: Seasonal harvesting one year solution with data2   

 

 

Figure11. Seasonal harvesting one year solution with data3 



On Figure 12 we repeat Figure 11 to show a long-term behaviour of the system 

 

Figure 12: Seasonal harvesting  with data3   

2. Second example:  

    
0.5

( )
0

tλ
⎧

= ⎨
⎩

if Hn + bn < t < H(n + 1) + bn; n = 0, 1, 2...

H(n + 1) + bn < t < H(n + 1) + b(n + 1); n = 0, 1, 2...

We applied this example to data1 in Figure 13.  

 

Figure 13: One year solution with data1   

 

3. Third example:  

 
1 sin(2 )

( )
4

t
t

πλ +
=  (18) 

whose maximum is λ(0.25+n)=0.5 and minimum λ(0.75+n)=0,n=0,1,2.... 

Figure 1s 13-16 are the numerical solutions with data1, data2 and data3.  



 

Figure 14: One year solution with data1   

 

 

Figure 15: One year solution with data2  

 

Figure 16: One year solution with data3  

 

4. The effects of β 



 

 

Figure 17: Dynamics of seasonal harvesting with data1. 

Figure 17 shows that β changes the N
*

s  only if  N
*

s  is below N(0), specifically, as β 

decreases, N
*

s  increases.  

In another test case shown in Figure 18, as β changes the rate of N(t) is approaching N
*

s . 

However, it does not change the value of N
*

s  itself.  

 

Figure 18: Short time behavior and the dynamics of β in seasonal harvesting with data3. 

Comparing Figure 17 and Figure 18, we can see that the effect of β depends on the 

particular character of λ(t) itself.  

Comparing the seasonal harvesting with strategy 2 and 4 which was tested with the same set of 

data, we can see that strategy 6 behaves similarly to strategy 2 depending on λ(t). Also due to the 

periodic nature of λ, it tends to have a higher N
*

s  than strategy 2. Although strategy 4 has no worry 

of extinction because of the existence of N
thre

, it has the cost of decrease of Y.  



2.6 Rotational harvesting 

In practice, this strategy is usually executed by dividing the field into different areas and closes 

some of them rotationally [7,11]. Assume there is no immigration and migration of fish, and 

consider just total area of rotation as one dynamic system, then the system will behave almost the 

same way as periodic harvesting. The numerical analysis will be almost the same as periodic 

harvesting, the difference is just that the closure period will likely be longer and the fish 

population has more time to recover from the harvest season. Therefore it is possible to increase 

the maximum yield within a certain period of time. Therefore, only one numerical simulation 

example is listed here. Consider the third example in periodic harvesting with data1 and 

harvesting for one year and then close for two years. 

 

Figure19: Short time behavior in rotational harvesting 

 

Figure20: Long-time behavior in rotational harvesting 

 

 

 

 



3. Conclusions 

We developed a new fishing effort model which relies on the density effect of fish. We study the 

consequences of harvesting with five fishery strategies. This study concludes a control parameter 

β, which defines the magnitude of the effect of the fish population size on E, changes not only 

the rate at which the population goes to equilibrium, but also the equilibrium values. 

It is shown that β plays a significant role for the seasonal harvesting. Comparing the seasonal 

harvesting with strategy 2 and 4, that was tested with the same set of data, we can see that strategy 

5 has a similar behavior as strategy 2 depending on λ(t). Also due to the period behavior of λ, it 

tends to have a higher N
*

s  than strategy 2. Although strategy 5 prevents fish population from 

extinction because of the threshold population size N
thre

 . 

It follows from our analysis that the rotational use of fishing grounds increases both yield- and 

biomass-per-recruit, while still keeps the fish population sustainable.  

While the rotational harvesting behavior is almost the same as the case of  periodic harvesting, the 

difference appears when q=1: while the continuous periodic harvesting will cause the fish to 

extinguish, it is not the case for rotational harvesting, which clearly fluctuate a lot with a period of 

3 but managed to remain sustainable and fishes are not extinguished. It proves that the rotational 

harvest strategy is good in a sense that it can yield a larger amount of fish in a certain period of 

time. 

 

Table 1 summarizes the results for different strategies.  

 

Strategy Limitations Dynamics 

Proportional 

harvesting    

(Strategy 2) 

λqα<r 

As the slope of 
λqα

1-λqβN grows, the value of positive N
*

s  is 

decreased and severe over-fishing happens and the fish 

approach extinction. The system undergoes a transcritical 

bifurcation as λqα increases.  

Increase in β  will stabilize the population faster 

Proportional 

threshold harvesting 

(Strategy 4) 

N(0)>0 

Increase in β  will converge N(t) to  N
*

s  faster if N(0) is above 

the equilibrium solution. However, if N(0) is below N
*

s , 

increase in β will cause N(t) to converge to  N
*

s  slower.   

 

Seasonal harvesting 

(Strategy 5) 

Dependence 

on λ(t) 
Also due to the periodic nature of λ, it tends to have a higher 

N
*

s  than strategy 2. Although strategy 5 has no worry of 

extinction because of the existence of N
thre

, it has the cost of 

a decrease in Y.  

Changes  the values of  N
*

s   

Table 1: Different strategies comparison 
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