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ABSTRACT

Users’ interactions with items are driven by various intents (e.g.,

preparing for holiday gifts, shopping for fishing equipment, etc.).

However, users’ underlying intents are often unobserved/latent,

making it challenging to leverage such latent intents for Sequential

recommendation (SR). To investigate the benefits of latent intents

and leverage them effectively for recommendation, we propose

Intent Contrastive Learning (ICL), a general learning paradigm that

leverages a latent intent variable into SR. The core idea is to learn

users’ intent distribution functions from unlabeled user behavior

sequences and optimize SR models with contrastive self-supervised

learning (SSL) by considering the learnt intents to improve recom-

mendation. Specifically, we introduce a latent variable to represent

users’ intents and learn the distribution function of the latent vari-

able via clustering. We propose to leverage the learnt intents into

SR models via contrastive SSL, which maximizes the agreement

between a view of sequence and its corresponding intent. The train-

ing is alternated between intent representation learning and the

SR model optimization steps within the generalized expectation-

maximization (EM) framework. Fusing user intent information into

SR also improves model robustness. Experiments conducted on four

real-world datasets demonstrate the superiority of the proposed

learning paradigm, which improves performance, and robustness

against data sparsity and noisy interaction issues 1.
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1Code is available at https://github.com/salesforce/ICLRec
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1 INTRODUCTION

Recommender systems have been widely used in many scenarios

to provide personalized items to users over massive vocabularies

of items. The core of an effective recommender system is to accu-

rately predict users’ interests toward items based on their historical

interactions. With the success of deep learning, deep Sequential

Recommendation (SR) [13, 35] models, which aims at dynamically

characterizing the behaviors of users with different deep neural

networks [43, 46], arguably represents the current state-of-the-

art [6, 13, 19, 27, 35, 45, 51].
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Figure 1: Users’ purchasing behaviors can be driven by un-

derlying intents that are not observed.

In general, a deep SR model is trained based on users’ interaction

behaviors via a deep neural network, assuming users’ interests

depending on historical behaviors. However, consuming behaviour

of users can be affected by other latent factors, i.e., driven by their

underlying intents. Consider the example illustrated in Figure 1.

Two users purchased a series of different items on Amazon in the

past. Given such distinct interaction behaviors, the system will

recommend different items to them. However, both of them are fish-

ing enthusiasts and are shopping for fishing activities. As a result,

they both purchase ‘fishing swivels’ in the future. If the system is

aware that these two users are shopping for fishing activities, then
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commonly purchased items for fishing, such as ‘fishing swivels’

can be suggested. This motivates us to mine underlying intents that

are shared across users and use the learnt intents to guide system

providing recommendations.

Precisely discovering the intents of users, however, is under-

explored. Most existing works [1, 37] of user intent modeling re-

quire side information. ASLI [37] leverages user action types (e.g.,

click, add-to-favorite, etc.) to capture users’ intentions, whereas

such information is not always available in system. CoCoRec [1]

utilizes item category information. But we argue that categorical

feature is unable to accurately represents users’ intents. For exam-

ple, intents like ‘shopping for holiday gifts’ may involve items from

multiple different categories. DSSRec [27] proposes a seq2seq train-

ing strategy, which optimizes the intents in latent spaces. However,

those intents in DSSRec are inferred solely based on individual se-

quence representation, while ignoring the underlying correlations

of the intents from different users.

Effectively modeling latent intents from user behaviors poses

two challenges. First, it is extremely difficult to learn latent intents

accurately because we have no labelling data for intents. The only

available supervision signals for intents are the user behavior data.

Nevertheless, as aforementioned example indicates, distinct behav-

iors may reflect the same intent. Besides, effectively fusing intent

information into a SR model is non-trivial. The target in SR is to pre-

dict next items in sequences, which is solved by encoding sequences.

Leveraging latent intents of sequences into the model requires the

intent factors to be orthogonal to the sequence embeddings, which

otherwise would induce redundant information.

To discover the benefits of latent intents and address challenges,

we propose the IntentContrastive Learning (ICL), a general learning

paradigm that leverages the latent intent factor into SR. It learns

users’ intent distributions from all user behavior sequences via

clustering. And it leverages the learnt intents into the SR model

via a new contrastive SSL, which maximizes the agreement be-

tween a view of sequence and its corresponding intent. The intent

representation learning module and the contrastive SSL module

are mutually reinforced to train a more expressive sequence en-

coder. We tackle the challenge of intent mining problem by in-

troducing a latent variable to represent users’ intents and learn

them alternately along with the SR model optimization through

an expectation-maximization (EM) framework to ensure conver-

gence. We suggest fusing learnt intent information into SR via the

proposed contrastive SSL, as it can improve model’s performance

as well as robustness. Extensive experiments conducted on four

real-world datasets further verify the effectiveness of the proposed

learning paradigm, which improves performance and robustness,

even when recommender systems face heavy data sparsity issues.

2 RELATED WORK

2.1 Sequential Recommendation

Sequential recommendation aims to accurately characterize users’

dynamic interests by modeling their past behavior sequences [5, 13,

21, 23, 32, 34]. Early works on SR usually model an item-to-item

transaction pattern based on Markov Chains [10, 32]. FPMC [34]

combines the advantages of Markov Chains and matrix factoriza-

tion to fuse both sequential patterns and users’ general interest.

With the recent advances of deep learning, many deep sequential

recommendation models are also developed [12, 13, 35, 36]. Such

as Convolutional Neural Networks (CNN)-based [36] and RNN-

based [12] models. The recent success of Transformer [40] also

motivates the developments of pure Transformer-based SR models.

SASRec [13] utilizes unidirectional Transformer to assign weights

to each interacted item adaptively. BERT4Rec [35] improves that

by utilizing a bidirectional Transformer with a Cloze task [38] to

fuse user behaviors information from left and right directions into

each item. LSAN [21] improves SASRec on reducing model size

perspective. It proposes a temporal context-aware embedding and

twin-attention network, which are light weighted. ASReP [24] fur-

ther alleviates the data-sparsity issue by leveraging a pre-trained

Transformer on the revised user behavior sequences to augment

short sequences. In this paper, we study the potential of addressing

data sparsity issues and improving SR via self-supervised learning.

2.2 User Intent for Recommendation

Recently, many approaches have been proposed to study users’ in-

tents for improving recommendations [3, 17, 18, 41]. MCPRN [41]

designs mixture-channel purpose routing networks to adaptively

learn users’ different purchase purposes of each item under differ-

ent channels (sub-sequences) for session-based recommendation.

MITGNN[25] proposes a multi-intent translation graph neural net-

work to mine users’ multiple intents by considering the correla-

tions of the intents. ICM-SR [31] designs an intent-guided neighbor

detector to retrieve correct neighbor sessions for neighbor repre-

sentation. Different from session-based recommendation, another

line of works focus on modeling the sequential dynamics of users’

interaction behaviors in a longer time span. DSSRec [27] proposes

a seq2seq training strategy using multiple future interactions as

supervision and introducing an intent variable from her histori-

cal and future behavior sequences. The intent variable is used to

capture mutual information between an individual user’s histor-

ical and future behavior sequences. Two users of similar intents

might be far away in representation space. Unlike this work, our

intent variable is learned over all users’ sequences and is used to

maximize mutual information across different users with similar

learned intents. ASLI [37] captures intent via a temporal convolu-

tional network with side information (e.g., user action types such

as click, add-to-favorite, etc.), and then use the learned intents to

guide SR model to predict the next item. Instead, our method can

learn users’ intents based on user interaction data only.

2.3 Contrastive Self-Supervised Learning

Contrastive Self-Supervised Learning (SSL) has brought much atten-

tions by different research communities including CV [2, 4, 9, 14, 20]

and NLP [7, 8, 29, 50], as well as recommendation [44, 45, 47, 51].

The fundamental goal of contrastive SSL is to maximize mutual

information among the positive transformations of the data itself

while improving discrimination ability to the negatives. In rec-

commendation, A two-tower DNN-based contrastive SSL model

is proposed in [47]. It aims to improving collaborative filtering

based recommendation leveraging item attributes. SGL [44] adopts

a multi-task framework with contrastive SSL to improve the graph

neural networks (GCN)-based collaborative filtering methods [11,
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26, 42, 49] with only item IDs as features. Specific to SR, S3-Rec [51]

adopts a pre-training and fine-tuning strategy, and utilizes con-

trastive SSL during pre-training to incorporate correlations among

items, sub-sequences, and attributes of a given user behavior se-

quence. However, the two-stage training strategy prevents the in-

formation sharing between next-item prediction and SSL tasks

and restricts the performance improvement. CL4SRec [45] and

CoSeRec [23] instead utilize a multi-task training framework with

a contrastive objective to enhance user representations. Different

from them, our work is aware of users’ latent intent factor when

leveraging contrastive SSL, which we show to be beneficial for

improving recommendation performance and robustness.

3 PRELIMINARIES

3.1 Problem definition

Assume that a recommender system has a set of users and items

denoted by U and V respectively. Each user 𝑢 ∈ U has a se-

quence of interacted items sorted in chronological order 𝑆𝑢 =

[𝑠𝑢1 , . . . , 𝑠
𝑢
𝑡 , . . . , 𝑠

𝑢
|𝑆𝑢 |

] where |𝑆𝑢 | is the number of interacted items

and 𝑠𝑢𝑡 is the item 𝑢 interacted at step 𝑡 . We denote S𝑢 as embedded

representation of 𝑆𝑢 , where s𝑢𝑡 is the d-dimensional embedding of

item 𝑠𝑢𝑡 . In practice, sequences are truncated with maximum length

𝑇 . If the sequence length is greater than𝑇 , the most recent𝑇 actions

are considered. If the sequence length is less than𝑇 , ‘padding’ items

will be added to the left until the length is 𝑇 [12, 13, 36]. For each

user 𝑢, the goal of next item prediction task is to predict the next

item that the user 𝑢 is most likely to interact with at the |𝑆𝑢 | + 1

step among the item setV , given sequence S𝑢 .

3.2 Deep SR Models for Next Item Prediction

Modern sequential recommendation models commonly encode user

behavior sequences with a deep neural network to model sequen-

tial patterns from (truncated) user historical behavior sequences.

Without losing generality, we define a sequence encoder 𝑓𝜃 (·) that

encodes a sequence S𝑢 and outputs user interest representations

over all position steps H𝑢 = 𝑓𝜃 (S
𝑢 ). Specially, h𝑢𝑡 represents user’s

interest at position 𝑡 . The goal can be formulated as finding the

optimal encoder parameter 𝜃 that maximizes the log-likelihood

function of the expected next items of given 𝑁 sequences on all

positional steps:

𝜃∗ = argmax
𝜃

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=2

ln 𝑃𝜃 (𝑠
𝑢
𝑡 ). (1)

which is equivalent to minimizing the adapted binary cross-

entropy loss as follows:

LNextItem =

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=2

LNextItem (𝑢, 𝑡), (2)

LNextItem (𝑢, 𝑡) = − log(𝜎 (h𝑢𝑡−1 · s
𝑢
𝑡 )) −

∑︁

𝑛𝑒𝑔

log(1 − 𝜎 (h𝑢𝑡−1 · s
𝑢
𝑛𝑒𝑔)),

(3)

where s
𝑢
𝑡 and s

𝑢
𝑛𝑒𝑔 denote the embeddings of the target item 𝑠𝑡

and all items not interacted by 𝑢. The sum operator in Eq. 3 is

computationally expensive because |𝑉 | is large. Thus we follow [3,

13, 51] to use a sampled softmax technique to randomly sample a

negative item for each time step in each sequence. 𝜎 is the sigmoid

function. And 𝑁 is refers to the mini-batch size as the SR model.

3.3 Contrastive SSL in SR

Recent advances in contrastive SSL have inspired the recommen-

dation community to leverage contrastive SSL to fuse correlations

among different views of one sequence [4, 44, 47], following the

mutual information maximization (MIM) principle. Existing ap-

proaches in SR can be seen as instance discrimination tasks that

optimize a lower bound of MIM, such as InfoNCE [4, 9, 20, 30]. It

aims to optimize the proportion of gap of positive pairs and nega-

tive pairs [22]. In such an instance discrimination task, sequence

augmentations such as ‘mask’, ‘crop’, or ‘reorder’ are required to

create different views of the unlabeled data in SR [35, 45, 51, 52].

Formally, given a sequence 𝑆𝑢 , and a pre-defined data transfor-

mation function set G, we can create two positive views of 𝑆𝑢 as

follows:

𝑆𝑢1 = 𝑔𝑢1 (𝑆
𝑢 ), 𝑆𝑢2 = 𝑔𝑢2 (𝑆

𝑢 ), s.t. 𝑔𝑢1 , 𝑔
𝑢
2 ∼ G, (4)

where 𝑔𝑢1 and 𝑔𝑢2 are transformation functions sampled from G to

create a different view of sequence 𝑠𝑢 . Commonly, views created

from the same sequence are treated as positive pairs, and the views

of any different sequences are considered as negative pairs. The

augmented views are first encoded with the sequence encoder 𝑓𝜃 (·)

to H̃
𝑢
1 and H̃

𝑢
2 , and then be fed into an ‘Aggregation’ layer to get

vector representations of sequences, denoted as h̃𝑢1 and h̃
𝑢
2 . In this

paper, we ‘concatenate’ users’ interest representations over time

steps for simplicity. Note that sequences are prepossessed to have

the same length (See Sec. 3.1), thus their vector representations

after concatenation have the same length too. After that, we can

optimize 𝜃 via InfoNCE loss:

LSeqCL = LSeqCL (h̃
𝑢
1 , h̃

𝑢
2 ) + LSeqCL (h̃

𝑢
2 , h̃

𝑢
1 ), (5)

and

LSeqCL (h̃
𝑢
1 , h̃

𝑢
2 ) = − log

exp(sim(h̃𝑢1 , h̃
𝑢
2 ))

∑

𝑛𝑒𝑔 exp(sim(h̃𝑢1 , h̃𝑛𝑒𝑔))
, (6)

where 𝑠𝑖𝑚(·) is dot product and h̃𝑛𝑒𝑔 are negative views’ represen-

tations of sequence 𝑆𝑢 . Figure 2 (a) illustrates how SeqCL works.

3.4 Latent Factor Modeling in SR

The main goal of next item prediction task is to optimize Eq. (1).

Assume that there are also 𝐾 different user intents (e.g., purchasing

holiday gifts, preparing for fishing activity, etc.) in a recommender

system that forms the intent variable 𝑐 = {𝑐𝑖 }
𝐾
𝑖=1, then the proba-

bility of a user interacting with a certain item can be rewritten as

follows:

𝑃𝜃 (𝑠
𝑢 ) = E(𝑐)

[

𝑃𝜃 (𝑠
𝑢 , 𝑐)

]

. (7)

However, users intents are latent by definition. Because of the miss-

ing observation of variable 𝑐 , we are in a ‘chicken-and-eggs’ situa-

tion that without 𝑐 , we cannot estimate parameter 𝜃 , and without

𝜃 we cannot infer what the value of 𝑐 might be.

Later, we will show that a generalized Expectation-Maximization

framework provides a direction to address above problem with a

convergence guarantee. The basic idea of optimizing Eq. (7) via
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Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-

tent representation learning and intent contrastive SSL with FNMwithin the generalized EM framework tomaximizes mutual

information (MIM) between a behavior sequence and its corresponding intent prototype.

EM is to start with an initial guess of the model parameter 𝜃 and

estimate the expected values of the missing variable 𝑐 , i.e., the E-

step. And once we have the values of 𝑐 , we can maximize the Eq. (7)

w.r.t the parameter 𝜃 , i.e., the M step. We can repeat this iterative

process until the likelihood cannot increase anymore.

4 METHOD

The overview of the proposed ICL within EM framework is pre-

sented in Figure 2 (b). It performs E-step and M-step alternately to

estimate the distribution function 𝑄 (𝑐) over the intent variable 𝑐

and optimize the model parameters 𝜃 . In E-step, it estimates 𝑄 (𝑐)

via clustering. In M-step, it optimizes 𝜃 with considering the esti-

mated𝑄 (𝑐) via mini-batch gradient descent. In each iteration,𝑄 (𝑐)

and 𝜃 are updated.

In the following sections, we first derive the objective function

in order to model the latent intent variable 𝑐 into an SR model,

and how to alternately optimize the objective function w.r.t. 𝜃 and

estimate the distribution of 𝑐 under a generalized EM framework

in Section 4.1. Then we describe the overall training strategy in

Section 4.2. We provide detailed analyses in Section 4.3 followed

by experimental studies in Section 5.

4.1 Intent Contrastive Learning

4.1.1 Modeling Latent Intent for SR. Assuming that there are

𝐾 latent intent prototypes {𝑐𝑖 }
𝐾
𝑖=1 that affect users’ decisions to

interact with items, then based on Eq. (1) and (7), we can rewrite

objective as follows:

𝜃∗ = argmax
𝜃

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=1

lnE(𝑐)
[

𝑃𝜃 (𝑠
𝑢
𝑡 , 𝑐𝑖 )

]

, (8)

which is however hard to optimize. Instead, we construct a lower-

bound function of Eq. (8) and maximize the lower-bound. Formally,

assume intent 𝑐 follows distribution 𝑄 (𝑐), where
∑

𝑐 𝑄 (𝑐𝑖 ) = 1 and

𝑄 (𝑐𝑖 ) ≥ 0. Then we have

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=1

lnE(𝑐)
[

𝑃𝜃 (𝑠
𝑢
𝑡 , 𝑐𝑖 )

]

=

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=1

ln

𝐾
∑︁

𝑖=1

𝑃𝜃 (𝑠
𝑢
𝑡 , 𝑐𝑖 )

=

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=1

ln

𝐾
∑︁

𝑖=1

𝑄 (𝑐𝑖 )
𝑃𝜃 (𝑠

𝑢
𝑡 , 𝑐𝑖 )

𝑄 (𝑐𝑖 )
.

(9)

Based on the Jensen’s inequality, the term in Eq. (9) is

≥

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=1

𝐾
∑︁

𝑖=1

𝑄 (𝑐𝑖 ) ln
𝑃𝜃 (𝑠

𝑢
𝑡 , 𝑐𝑖 )

𝑄 (𝑐𝑖 )

∝

𝑁
∑︁

𝑢=1

𝑇
∑︁

𝑡=1

𝐾
∑︁

𝑖=1

𝑄 (𝑐𝑖 ) · ln 𝑃𝜃 (𝑠
𝑢
𝑡 , 𝑐𝑖 ),

(10)

where the ∝ stands for ‘proportional to’ (i.e. up to a multiplicative

constant). The inequality will hold with equality when 𝑄 (𝑐𝑖 ) =

𝑃𝜃 (𝑐𝑖 |𝑠
𝑢
𝑡 ). For simplicity, we only focus on last positional step when

optimize the lower-bound, which is defined as:

𝑁
∑︁

𝑢=1

𝐾
∑︁

𝑖=1

𝑄 (𝑐𝑖 ) · ln 𝑃𝜃 (𝑆
𝑢 , 𝑐𝑖 ), (11)

where 𝑄 (𝑐𝑖 ) = 𝑃𝜃 (𝑐𝑖 |𝑆
𝑢 ).

So far, we have found a lower-bound of Eq. (8). However, we

cannot directly optimize Eq. (11) because𝑄 (𝑐) is unknown. Instead,

we alternately optimize the model between the Intent Representa-

tion Learning (E-step) and the Intent Contrastive SSL with FNM

(M-step), which follows a generalized EM framework. We term the

whole processes Intent Contrastive Learning (ICL). In each iteration,

𝑄 (𝑐) and the model parameter 𝜃 are updated.

4.1.2 Intent Representation Learning. To learn the intent dis-

tribution function 𝑄 (𝑐), we encode all the sequences {𝑆𝑢 }
|U |
𝑢=1 with

the encoder 𝜃 followed by an ‘aggregation layer’, and then we per-

form𝐾-means clustering over all sequence representations {h𝑢 }
|U |
𝑢=1
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to obtain 𝐾 clusters. After that, we can define the distribution func-

tion 𝑄 (𝑐𝑖 ) as follows:

𝑄 (𝑐𝑖 ) = 𝑃𝜃 (𝑐𝑖 |𝑆
𝑢 ) =

{

1 if 𝑆𝑢 in cluster 𝑖

0 else.
(12)

We denote ci as the vector representation of intent 𝑐𝑖 , which is

the centroid representation of the 𝑖𝑡ℎ cluster. In this paper, we use

‘aggregation layer’ to denote the themean pooling operation over all

position steps for simplicity. We leave other advanced aggregation

methods such as attention-based methods for future work studies.

Figure 2 (b) illustrates how the E-step works.

4.1.3 Intent Contrastive SSL with FNM. We have estimated

the distribution function 𝑄 (𝑐). To maximize Eq. (11), we also need

to define 𝑃𝜃 (𝑆
𝑢 , 𝑐𝑖 ). Assuming that the prior over intents follow the

uniform distribution and the conditional distribution of 𝑆𝑢 given 𝑐

is isotropic Gaussian with 𝐿2 normalization, then we can rewrite

𝑃𝜃 (𝑆
𝑢 , 𝑐𝑖 ) as follows:

𝑃𝜃 (𝑆
𝑢 , 𝑐𝑖 ) = 𝑃𝜃 (𝑐𝑖 )𝑃𝜃 (𝑆

𝑢 |𝑐𝑖 ) =
1

𝐾
· 𝑃𝜃 (𝑆

𝑢 |𝑐𝑖 )

∝
1

𝐾
·

exp(−(h𝑢 − c𝑖 )
2)

∑𝐾
𝑗=1 exp(−(h

𝑢
𝑖 − c𝑗 )2)

∝
1

𝐾
·

exp(h𝑢 · c𝑖 )
∑𝐾
𝑗=1 exp(h

𝑢 · c𝑗 )
,

(13)

where h𝑢 and c𝑢 are vector representations of 𝑆
𝑢 and 𝑐𝑖 , respectively.

Based on Eq. (11), (12), (13), maximizing Eq. (11) is equivalent to

minimize the following loss function:

−

𝑁
∑︁

𝑣=1

log
exp(sim(h𝑢 , c𝑖 ))

∑𝐾
𝑗=1 exp(sim(h𝑢 , c𝑗 ))

, (14)

where sim(·) is a dot product. We can see that Eq. (14) has a similar

form as Eq. (6), where Eq. (6) tries to maximize mutual informa-

tion between two individual sequences. While Eq. (14) maximizes

mutual information between one individual sequence and its corre-

sponding intent. Note that, sequence augmentations are required in

SeqCL to create positive views for Eq. (6). While in ICL, sequence

augmentations are optional, as the view of a given sequence is its

corresponding intent that learnt from original dataset. In this paper,

we apply sequence augmentations for enlarging training set pur-

pose and optimize model w.r.t 𝜃 based on Eq. (14). Formally, given

a batch of training sequences {𝑠𝑢 }
𝑁
𝑢=1, we first create two positive

views of a sequence via Eq. (4), and then optimize the following

loss function:

LICL = LICL (h̃
𝑢
1 , c𝑢 ) + LICL (h̃

𝑢
2 , c𝑢 ), (15)

and

LICL (h̃
𝑢
1 , c𝑢 ) = − log

exp(sim(h̃𝑢1 , c𝑢 ))
∑

𝑛𝑒𝑔 exp(sim(h̃𝑢1 , c𝑛𝑒𝑔))
, (16)

where 𝑐𝑛𝑒𝑔 are all the intents in the given batch. However, directly

optimizing Eq. (16) can introduce false-negative samples since users

in a batch can have same intent. To mitigate the effects of false-

negatives, we propose a simple strategy to mitigate the effects by

not contrasting against them:

LICL (h̃
𝑢
1 , c𝑢 ) = − log

exp(sim(h̃𝑢1 , c𝑢 ))
∑𝑁
𝑣=1 ✶𝑣∉F exp(sim(h̃1, c𝑣))

, (17)

where F is a set of users that have same intent as 𝑢 in the mini-

batch. We term this False-Negative Mitigation (FNM). Figure 2

(b) illustrates how the M-step works.

4.2 Multi-Task Learning

We train the SR model with a multi-task training strategy to jointly

optimize ICL via Eq. (17), the main next-item prediction task via

Eq. (2) and a sequence level SSL task via Eq. (5). Formally, we jointly

train the SR model 𝑓𝜃 as follows:

L = LNextItem + 𝜆 · LICL + 𝛽 · LSeqCL, (18)

where 𝜆 and 𝛽 control the strengths of the ICL task and sequence

level SSL tasks, respectively. Appendix A provides the pseudo-code

of the entire learning pipeline. Specially, we build the learning par-

adigm on Transformer [13, 40] encoder to form the model ICLRec.

ICL is amodel-agnostic objective, sowe also apply it to S3-Rec [51]

model, which is pre-trained with several LSeqCL objectives to cap-

ture correlations among items, associated attributes, and subse-

quences in a sequence and fine-tuned with the LNextItem objective,

to further verify its effectiveness (see 5.4 for details).

4.3 Discussion

4.3.1 Connections with Contrastive SSL in SR. Recent meth-

ods [45, 51] in SR follow standard contrastive SSL to maximize

mutual information between two positive views of sequences. For

example, CL4SRec encodes sequences with Transformer and max-

imizes mutual information between two sequences that are aug-

mented (cropping, masking, or reordering) from the original se-

quence. However, if the item relationships of a sequence are vul-

nerable to random perturbation, two views of this sequence may

not reveal the original sequence correlations. ICLRec maximizes

mutual information between a sequence and its corresponding in-

tent prototype. Since the intent prototype can be considered as a

positive view of a given sequence that learnt by considering the

semantic structures of all sequences, which reflects true sequence

correlations, the ICLRec can outperform CL4SRec consistently.

4.3.2 Time Complexity and Convergence Analysis. In every

iteration of the training phase, the computation costs of our pro-

posed method are mainly from the E-step estimation of 𝑄 (·) and

M-step optimization of 𝜃 with multi-tasks training. For the E-step,

the time complexity is 𝑂 ( |𝑈 |𝑚𝐾𝑑) from clustering, where 𝑑 is the

dimensionality of the embedding and𝑚 is the maximum iteration

number in clustering (𝑚 = 20 in this paper). For the M-step, since

we have three objectives to optimize the network 𝑓𝜃 (·), the time

complexity is𝑂 (3 · ( |𝑈 |2𝑑 + |𝑈 |𝑑2). The overall complexity is dom-

inated by the term 𝑂 (3 · ( |𝑈 |2𝑑)), which is 3 times of Transformer-

based SR with only next item prediction objective, e.g., SASRec.

Fortunately, the model can be effectively parallelized because 𝑓𝜃 is

Transformer and we leave it in future work. In the testing phase,

the proposed ICL as well as the SeqCL objectives are no longer

needed, which yields the model to have the same time complexity
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as SASRec (𝑂 (𝑑 |𝑉 |)). The empirical time spending comparisons are

reported in Sec. 5.2. The convergence of ICL is guaranteed under

the generalized EM framework. Proof is provided in Appendix B.

5 EXPERIMENTS

5.1 Experimental Setting

5.1.1 Datasets. We conduct experiments on four public datasets.

Sports, Beauty and Toys are three subcategories of Amazon review

data introduced in [28]. Yelp2 is a dataset for business recommen-

dation.

We follow [45, 51] to prepare the datasets. In detail, we only keep

the ‘5-core’ datasets, in which all users and items have at least 5

interactions. The statistics of the prepared datasets are summarized

in Appendix C.

5.1.2 Evaluation Metrics. We follow [16, 42] to rank the predic-

tion on the whole item set without negative sampling. Performance

is evaluated on a variety of evaluation metrics, including Hit Ra-

tio@𝑘 (HR@𝑘), and Normalized Discounted Cumulative Gain@𝑘

(NDCG@𝑘) where 𝑘 ∈ {5, 20}.

5.1.3 Baseline Methods. Four groups of baseline methods are

included for comparison.

• Non-sequential models: BPR-MF [33] characterizes the pair-

wise interactions via a matrix factorization model and optimizes

through a pair-wise Bayesian Personalized Ranking loss.

• Standard sequential models.We include solutions that train

the models with a next-item prediction objective. Caser [36] is a

CNN-based approach, GRU4Rec [12] is an RNN-based method,

and SASRec [13] is one of the state-of-the-art Transformer-based

baselines for SR.

• Sequential models with additional SSL: BERT4Rec [35] re-

places the next-item prediction with a Cloze task [38] to fuse

information between an item (a view) in a user behavior se-

quence and its contextual information. S3-Rec [51] uses SSL to

capture correlation-ship among item, sub-sequence, and associ-

ated attributes from the given user behavior sequence. Its mod-

ules for mining on attributes are removed because we don’t have

attributes for items, namely S3-Rec𝐼𝑆𝑃 . CL4SRec [45] fuses con-

trastive SSL with a Transformer-based SR model.

• Sequential models considering latent factors: We include

DSSRec[27], which utilizes seq2seq training and performs opti-

mization in latent space. We do not directly compare ASLI [37],

as it requires user action type information (e.g., click, add-to-

favorite, etc). Instead, we provide a case study in Sec. 5.6 to

evaluate the benefits of the learnt intent factor with additional

item category information.

5.1.4 ImplementationDetails. Caser3, BERT4Rec4, and S3-Rec5

are provided by the authors. BPRMF6, GRU4Rec7, and DSSRec 8 are

implemented based on public resources. We implement SASRec and

2https://www.yelp.com/dataset
3https://github.com/graytowne/caser_pytorch
4https://github.com/FeiSun/BERT4Rec
5https://github.com/RUCAIBox/CIKM2020-S3Rec
6https://github.com/xiangwang1223/neural_graph_collaborative_filtering
7https://github.com/slientGe/Sequential_Recommendation_Tensorflow
8https://github.com/abinashsinha330/DSSRec

CL4SRec in PyTorch. The mask ratio in BERT4Rec is tuned from

{0.2, 0.4, 0.6, 0.8}. The number of attention heads and number of

self-attention layers for all self-attention based methods (SASRec,

S3-Rec, CL4SRec, DSSRec) are tuned from {1, 2, 4}, and {1, 2, 3},

respectively. The number of latent factors introduced in DSSRec is

tuned from {1, 2, . . . , 8}.

Our method is implemented in PyTorch. Faiss 9 is used for 𝐾-

means clustering to speed up the training and query stages. For

the encoder architecture, we set self-attention blocks and attention

heads as 2, the dimension of the embedding as 64, and the maxi-

mum sequence length as 50. The model is optimized by an Adam

optimizer [15] with a learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999,

and batch size of 256. For hyper-parameters of ICLRec, we tune 𝐾 ,

𝜆 and 𝛽 within {8, 64, 128, 256, 512, 1024, 2048}, {0.1, 0.2, · · · , 0.8},

and {0.1, 0.2, · · · , 0.8} respectively. All experiments are run on a

single Tesla V100 GPU.

5.2 Performance Comparison

Table 1 shows the results of different methods on all datasets. We

have the following observations. First, BPR performs worse than

sequential models in general, which indicates the importance of

mining the sequential patterns under user behavior sequences. As

for standard sequential models, SASRec utilizes a Transformer-

based encoder and achieves better performance than Caser and

GRU4Rec. This demonstrates the effectiveness of Transformer for

capturing sequential patterns. DSSRec further improves SASRec’s

performance by using a seq2seq training strategy and reconstructs

the representation of the future sequence in latent space for allevi-

ating non-convergence problems.

Moreover, though BERT4Rec and S3-Rec and adopt SSL to pro-

vide additional training signals to enhance representations , we

observe that both of them exhibit worse performance than SASRec

in some datasets (e.g., in the Toys dataset). The reason might be that

both BERT4Rec and S3-Rec aim to incorporate context information

of given user behavior sequences via masked item prediction. Such

a goal may not align well with the next item prediction target, and

it requires that each user behavior sequence is long enough to pro-

vide comprehensive ‘context’ information. Thus their performances

are degenerated when most sequences are short. Besides, S3-Rec is

proposed to fuse additional contextual information. Without such

features, its two-stage training strategy prevents information shar-

ing between the next-item prediction and SSL tasks, thus leading

to poor results. CL4SRec consistently performs better than other

baselines, demonstrating the effectiveness of enhancing sequence

representations via contrastive SSL on an individual user level.

Finally, ICLRec consistently outperforms existing methods on

all datasets. The average improvements compared with the best

baseline ranges from 7.47% to 33.33% in HR and NDCG. The pro-

posed ICL estimates a good distribution of intents and fuses them

into SR model by a new contrastive SSL, which helps the encoder

discover a good semantic structure across different user behavior

sequences.

We also report the model efficiency on Sports. SASRec is the

most efficient solution. It spends 3.59 s/epoch on model updates.

CL4SRec and the proposed ICLRec spend 6.52 and 11.75 s/epoch,

9https://github.com/facebookresearch/faiss
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Table 1: Performance comparisons of differentmethods. The best score is bolded in each row, and the second best is underlined.

The last two columns are the relative improvements compared with the best baseline results.

Dataset Metric BPR GRU4Rec Caser SASRec DSSRec BERT4Rec S3-Rec𝐼𝑆𝑃 CL4SRec ICLRec Improv.

Sports

HR@5 0.0141 0.0162 0.0154 0.0206 0.0214 0.0217 0.0121 0.0217±0.0021 0.0283±0.0006 30.48%

HR@20 0.0323 0.0421 0.0399 0.0497 0.0495 0.0604 0.0344 0.0540±0.0024 0.0638±0.0023 18.15%

NDCG@5 0.0091 0.0103 0.0114 0.0135 0.0142 0.0143 0.0084 0.0137±0.0013 0.0182±0.0001 33.33%

NDCG@20 0.0142 0.0186 0.0178 0.0216 0.0220 0.0251 0.0146 0.0227±0.0016 0.0284±0.0008 24.89%

Beauty

HR@5 0.0212 0.0111 0.0251 0.0374 0.0410 0.0360 0.0189 0.0423±0.0031 0.0493±0.0013 16.43%

HR@20 0.0589 0.0478 0.0643 0.0901 0.0914 0.0984 0.0487 0.0994±0.0028 0.1076±0.0001 8.30%

NDCG@5 0.0130 0.0058 0.0145 0.0241 0.0261 0.0216 0.0115 0.0281±0.0018 0.0324±0.0017 15.51%

NDCG@20 0.0236 0.0104 0.0298 0.0387 0.0403 0.0391 0.0198 0.0441±0.0018 0.0489±0.0013 10.90%

Toys

HR@5 0.0120 0.0097 0.0166 0.0463 0.0502 0.0274 0.0143 0.0526±0.0034 0.0590±0.0012 12.07%

HR@20 0.0312 0.0301 0.0420 0.0941 0.0975 0.0688 0.0235 0.1038±0.0041 0.1150±0.0016 10.74%

NDCG@5 0.0082 0.0059 0.0107 0.0306 0.0337 0.0174 0.0123 0.0362±0.0025 0.0403±0.0002 11.34%

NDCG@20 0.0136 0.0116 0.0179 0.0441 0.0471 0.0291 0.0162 0.0506±0.0025 0.0560±0.0004 10.57%

Yelp

HR@5 0.0127 0.0152 0.0142 0.0160 0.0171 0.0196 0.0101 0.0229±0.0003 0.0257±0.0007 12.23%

HR@20 0.0346 0.0371 0.0406 0.0443 0.0464 0.0564 0.0314 0.0630±0.0009 0.0677±0.0016 7.47%

NDCG@5 0.0082 0.0091 0.008 0.0101 0.0112 0.0121 0.0068 0.0144±0.0001 0.0162±0.0003 12.50%

NDCG@20 0.0143 0.0145 0.0156 0.0179 0.0193 0.0223 0.0127 0.0256±0.0003 0.0279±0.0006 8.98%
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Figure 3: Performance comparison on different user groups

among SASRec, CL4SRec and ICLRec (Upper left: Beauty,

Upper right: Yelp, Lower left: Sports, Lower right: Toys).)

respectively. In detail, ICLRec spends 3.21 seconds to perform intent

representation learning, and rest of 8.54 seconds on multi-task

learning. The evaluation times of SASRec, CL4SRec, and ICLRec

are about the same(∼12.72s over testset) since the introduced ICL

task is only used during the training stage.

5.3 Robustness Analysis

Robustness w.r.t. user interaction frequency. The user ‘cold-

start’ problem [1, 48] is one of the typical data-sparsity issues that

recommender systems often face, i.e., most users have limited his-

torical behaviors. To check whether ICL improves the robustness

under such a scenario, we split user behavior sequences into three

groups based on their behavior sequences’ length, and keep the

total number of behavior sequences the same. Models are trained

and evaluated on each group of users independently. Figure 3 shows

the comparison results on four datasets. We observe that: (1) The

proposed ICLRec can consistently performs better than SASRec

among all user groups while CL4SRec fails to outperform SAS-

Rec in Beauty and Yelp when user behavior sequences are short.

This demonstrates that CL4SRec requires individual user behavior

sequences long enough to provide ‘complete’ information for auxil-

iary supervision while ICLRec reduces the need by leveraging user

intent information, thus consistently benefiting user representa-

tion learning even when users have limited historical interactions.

(2) Compared with CL4SRec, we observe that the improvement of

ICLRec is mainly because it provides better recommendations to

users with low interaction frequency. This verifies that user intent

information is beneficial, especially when the recommender system

faces data-sparsity issues where information in each individual user

sequence is limited.
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Figure 4: Performance comparison w.r.t. noise ratio on

Sports and Yelp. The bar chart shows the performance in

NDCG@5 and the line chart shows the corresponding drop

rate.

Robustness to Noisy Data. We also conduct experiments on

the Sports and Yelp datasets to verify the robustness of ICLRec
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against noisy interactions in the test phase. Specifically, we ran-

domly add a certain proportion (i.e., 5%, 10%, 15%, 20%) of negative

items to text sequences. From Figure 4 we can see that adding noisy

data deteriorates the performance of CL4SRec and ICLRec. How-

ever, the performance drop ratio of ICLRec is consistently lower

than CL4SRec, and its performance with 15% noise proportion can

still outperforms CL4SRec without noisy dataset on Sports. The

reason might be the leveraged intent information is collaborative

information that distilled from all the users. ICL helps the SR model

capture semantic structures from user behavior sequences, which

increases the robustness of ICLRec to noisy perturbations on indi-

vidual sequences.

Table 2: Ablation study of ICLRec (NDCG@20).

Model
Dataset

Sports Beauty Toys Yelp

(A) ICLRec 0.0287 0.0480 0.0554 0.0283

(B) w/o FNM 0.0283 0.0465 0.0524 0.0266

(C) only ICL 0.0263 0.0429 0.0488 0.0267

(D) w/o ICL 0.0238 0.0428 0.0505 0.0258

(E), is (C) w/o seq. aug 0.0242 0.0414 0.0488 0.0213

(F) SASRec 0.0216 0.0387 0.0441 0.0179

(G) ICL + S3-Rec𝐼𝑆𝑃 0.0157 0.0264 0.0266 0.0205

(H) S3-Rec𝐼𝑆𝑃 0.0146 0.0198 0.0162 0.0127

5.4 Ablation Study

Our proposed ICLRec contains a novel ICL objective, a false-negative

noise mitigation (FNM) strategy, a SeqCL objective, and sequence

augmentations. To verify the effectiveness of each component, we

conduct an ablation study on four datasets and report results in

Table 2. (A) is our final model, and (B) to (F) are ICLRec removed cer-

tain components. From (A)-(B) we can see that the FNM leverages

the learned intent information to avoid users with similar intents

pushing away in their representation space which helps the model

to learn better user representations. Compared with (A)-(D), we

find that without the proposed ICL, the performance drops signif-

icantly, which demonstrates the effectiveness of ICL. Compared

with (A)-(C), we find that individual user level mutual information

also helps to enhance user representations. As we analyze in Sec. 5.3,

it contributes more to long user sequences. Compared with (E)-(F),

we find that ICL can perform contrastive SSL without sequence

augmentations and outperforms SASRec. While CL4SRec requires

the sequence augmentation module to perform contrastive SSL.

Comparison between (C) and (E) indicates sequence augmentation

enlarges training set, which benefits improving performance.

Since ICL is a model-agostic learning paradigm, we also add

ICL to the S3-Rec𝐼𝑆𝑃 [51] model in the fine-tuning stage to further

verify its effectiveness. Results are shown in Table. 2 (G)-(H).We find

that the S3-Rec𝐼𝑆𝑃 model also benefits from the ICL objective. The

average improvement over the four datasets is 41.11% in NDCG@20,

which further validate the effectiveness and practicality of ICLRec.
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Figure 5: Impact of intent class numbers 𝐾 and the intent

contrastive learning strength 𝜆 on Yelp.

5.5 Hyper-parameter Sensitivity

The larger of the intent class number 𝐾 means users can have

more diverse intentions. The larger value of the strength of SeqCL

objective 𝛽 means the ICL task contributes more to the final model.

The results on Yelp is shown in Figure 5. We find that: (1) ICLRec

reaches its best performance when increasing 𝐾 to 512, and then

it starts to deteriorate as 𝐾 become larger. When 𝐾 is very small,

the number of users under each intent prototype can potentially

be large. As a result, false-positive samples (i.e., users that actually

have different intents are considered as having the same intent

erroneously) are introduced to the contrastive SSL, thus affecting

learning. On the other hand, when 𝐾 is too large, the number of

users under each intent prototype is small, the introduced false-

negative samples will also impair contrastive SSL. In Yelp, 512 user

intents summarize users’ distinct behaviors best. (2) A ‘sweet-spot’

of 𝜆 = 0.5 can also be found. It indicates that the ICL task can

benefit the recommendation prediction as an auxiliary task. The

impact of the batch size and 𝛽 are provided in Appendix D.
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Figure 6: Performance comparison w.r.t. Batch Size.

5.6 Case Study

The Sports dataset [28] contains 2,277 fine-grained item categories,

and the Yelp dataset provides 1,001 business categories. We utilize

these attributes to study the effectiveness of the proposed ICLRec

both quantitatively and qualitatively. Note that we did not use

this information during the training phrase. The detailed analysis

results are in Appendix E.

6 CONCLUSION

In this work, we propose a new learning paradigm ICL that can

model latent intent factors from user interactions and fuse them

into a sequential recommendation model via a new contrastive SSL

objective. ICL is formulated within an EM framework, which guar-

antees convergence. Detailed analyses show the superiority of ICL

and experiments conducted on four datasets further demonstrate

the effectiveness of the proposed method.
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A PSEUDO-CODE OF ICL FOR SR

Algorithm 1: ICL for SR

Input: training dataset {𝑠𝑢 }
|U |
𝑢=1 , sequence encoder 𝑓𝜃 , batch

size 𝑁 , hyper-parameters 𝐾 , 𝜆, 𝛽 .

Output: 𝜃 .

1 while 𝑒𝑝𝑜𝑐ℎ ≤ 𝑀𝑎𝑥𝑇𝑟𝑎𝑖𝑛𝐸𝑝𝑜𝑐ℎ do

// E-step: Intent Representation Learning

2 𝑐 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔({𝑓𝜃 (𝑆
𝑢 )}

|U |
𝑢=1 , 𝐾)

3 Update distribution function 𝑄 (𝑐𝑖 ) = 𝑃𝜃 (𝑐𝑖 |𝑆
𝑢 )

// M-step: Multi-Task Learning

4 for a minibatch {𝑠𝑢 }
𝑁
𝑢=1 do

5 for 𝑢 ∈ {1, 2, · · · , 𝑁 } do

// Construct 2 views.

6 𝑆𝑢1 = 𝑔𝑢1 (𝑆
𝑢 ), 𝑆𝑢2 = 𝑔𝑢2 (𝑆

𝑢 ), 𝑤ℎ𝑒𝑟𝑒 𝑔𝑢1 , 𝑔
𝑢
2 ∼ G

// Encoding via 𝑓𝜃 (·)

7 h
𝑢
= 𝑓𝜃 (𝑆

𝑢 )

8 h̃
𝑢
1 = 𝑓𝜃 (𝑆

𝑢
1 ), h̃

𝑢
2 = 𝑓𝜃 (𝑆

𝑢
2 )

// Optimization

9 L = LNextItem + 𝜆 · LICL + 𝛽 · LSeqCL

10 Update network 𝑓𝜃 (·) to minimize L

(b) ICLRec(a) CL4SRec

Main Item Categories : 1 : 2

Figure 7: Visualization of the learned users’ representations

by CL4SRec and ICLRec on Sports.

B PROOF OF CONVERGENCE

To proof the convergence of ICL under the generalized EM frame-

work, we just need to proof 𝑃𝜃 (𝑚+1) (𝑆) ≥ 𝑃𝜃 (𝑚) (𝑆), where𝑚 indi-

cates the number of training iterations. Based on Eq. (7), we have

ln 𝑃𝜃 (𝑚) (𝑆) = ln
𝑃𝜃 (𝑚) (𝑆, 𝑐𝑖 )

𝑃𝜃 (𝑚) (𝑐𝑖 |𝑆)
= ln 𝑃𝜃 (𝑚) (𝑆, 𝑐𝑖 ) − ln 𝑃𝜃 (𝑚) (𝑐𝑖 |𝑆).

(19)

Take the expectation in term of 𝑐 condition over 𝑆 on both sides,

then we have:

E(𝑐 |𝑆,𝜃 (𝑚) ) [ln 𝑃𝜃 (𝑆)] = E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚) (𝑆, 𝑐)
]

− E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚)
(𝑐 |𝑆)

]

.
(20)

Based on Eq. (12), and 20, the term on left side equal to:

E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚) (𝑆)
]

=

𝐾
∑︁

𝑖=1

𝑄 (𝑐𝑖 ) · ln 𝑃𝜃 (𝑚) (𝑆) = ln 𝑃𝜃 (𝑚) (𝑆).

(21)

Thus, proof 𝑃𝜃 (𝑚+1) (𝑆) ≥ 𝑃𝜃 (𝑚) (𝑆) is equivalent to proof

ln 𝑃𝜃 (𝑚+1) (𝑆) ≥ ln 𝑃𝜃 (𝑚) (𝑆), (22)

which is equivalent to:

E(𝑐 |𝑆,𝜃 (𝑚+1) )

[

ln 𝑃𝜃 (𝑚+1) (𝑆, 𝑐)
]

− E(𝑐 |𝑆,𝜃 (𝑚+1) )

[

ln 𝑃𝜃 (𝑚+1)
(𝑐 |𝑆)

]

≥ E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚) (𝑆, 𝑐)
]

− E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚)
(𝑐 |𝑆)

]

.

(23)

Because we try to optimize 𝜃 at M-step, thus we have

E(𝑐 |𝑆,𝜃 (𝑚+1) )

[

ln 𝑃𝜃 (𝑚+1) (𝑆, 𝑐)
]

≥ E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚) (𝑆, 𝑐)
]

.

(24)

And based on Jsnson’s inequality, we have

E(𝑐 |𝑆,𝜃 (𝑚+1) )

[

ln 𝑃𝜃 (𝑚+1)
(𝑐 |𝑆)

]

≤ E(𝑐 |𝑆,𝜃 (𝑚) )

[

ln 𝑃𝜃 (𝑚)
(𝑐 |𝑆)

]

. (25)

Combining Eq. (23), (24),and (25), we show that 𝑃𝜃 (𝑚+1) (𝑆) ≥

𝑃𝜃 (𝑚) (𝑆). Thus, the algorithm will converge.

C DATASET INFORMATION

Table 3: Dataset information.

Dataset Sports Beauty Toys Yelp

|U| 35,598 22,363 19,412 30,431

|V| 18,357 12,101 11,924 20,033

# Actions 0.3m 0.2m 0.17m 0.3m

Avg. length 8.3 8.9 8.6 8.3

Sparsity 99.95% 99.95% 99.93% 99.95%

D IMPACT OF BATCH SIZE AND THE
STRENGTH OF SEQCL TASK 𝛽

Performance w.r.t. batch size on Yelp between CL4SRec and the

proposed ICLRec are shown in Figure. 6. We observe that with the

batch size increases, CL4SRec’s performance does not continually

improve. The reason might because of larger batch sizes introduce

false-negative samples, which harms learning. While ICLRec is rel-

atively stable with different batch sizes, and out performs CL4SRec

in all circumstances. Because the intent learnt can be seen as a

pseudo label of sequences, which helps identify the true positive

samples via the proposed contrastive SSL with FNM.
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Figure 8: Impact of SeqCL task strength 𝛽 on Beauty (left)

and Yelp (right).

The impact of 𝛽 is shown in Figure 8. We can see that, 𝛽 does help

ICLRec improve the performance when it is small (e.g., 𝛽 ≤ 0.1).

However, when 𝛽 continually increase, the model performance

drop significantly. This phenomenon also indicates the limitation

of SeqCL, since focusing on maximize mutual information between

individual sequence pairs may break the global relationships among

users.

Table 4: Quantitative Analysis Results. (NDCG@20)

Datasets SASRec CL4SRec ICLRec-A ICLRec

Sports 0.0216 0.0238 0.0272
0.0275 (𝐾 = 2048)

0.0287 (𝐾 = 1024)

Yelp 0.0179 0.0258 0.0264
0.0271 (𝐾 = 1024)

0.0283 (𝐾 = 512)

E CASE STUDY

Quantitative analysis. We study how ICLRec will perform by

considering the item categories of users interacted items as their

intents. Specifically, given a user behavior sequence 𝑆𝑢 , we consider

the mean of its corresponding trainable item category embeddings

as the intent prototype c, aiming to replace the intent representation

learning described in Sec. 4.1.2. We run the corresponding model

named ICLRec-A and show the comparison results in Table 4. We

observe that on Sports (1) ICLRec-A performs better than CL4SRec,

which shows the potential benefits of leveraging item category in-

formation. (2) ICLRec achieves similar performance as ICLRec-A’s

when 𝐾 = 2048. Joint analysis with the above qualitative results

indicates that ICL can capture meaningful user intents via SSL. (3)

ICLRec can outperform ICLRec-A when 𝐾 = 1024. We hypothesize

that users’ intents can be better described by the latent variables

when 𝐾 = 1024 thus improving performance. (e.g., parents of the

existing item categories.) Similar observations in Yelp.

Qualitative analysis We also compare the proposed ICLRec

with CL4SRec by visualizing the learned users’ representations via

t-SNE [39]. Specifically, we sampled 100 users for whom used to

interact with one category of items or the other category. These

100 users also interacted with other categories of items in the past.

We visualize the learned users’ representations via t-SNE [39] in

Figure 7. From Figure 7 we can see, users’ representations learned by

ICLRec intent to pull users that interacted with the same category of

items closer to each other while pushing others further away in the

representation space than CL4SRec. It reflects that representations
learned by ICL can capture more semantic structures, therefore,

improves the performance.
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